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ABSTRACT

This paper examines the use of remote sensing satellite data
to predict food shortages among different categories of house-
holds in famine-prone areas. Normalized Difference Vegeta-
tion Index (NDVI) and rainfall estimate data, which can
be derived from multi-spectral satellite radiometer images,
has long been used to predict crop yields and hence famine.
This gives an overall prediction of food insecurity in an area,
though in a heterogeneous population it does not directly
predict which sectors of society or households are most at
risk.

In this work we use information on 3094 households across
Uganda collected between 2004-2005. We describe a method
for clustering households in such a way that the cluster de-
cision boundaries are both relevant for improved-specificity
famine prediction and are easily communicated. We then
give classification results for predicting food security status
at a household level given different combinations of satel-
lite data, demographic data, and household category indices
found by our clustering method. The food security classifi-
cation performance of this model demonstrates the potential
of this approach for making predictions of famine for specific
areas and demographic groups.

Categories and Subject Descriptors

J.2 [Computer Applications]: Physical Sciences and En-
gineering—Farth and atmospheric sciences; 1.5 [Computing
Methodologies]: Pattern Recognition

1. INTRODUCTION

Having an early warning of an impending famine increases
the chance that something can be done about it. Both demo-
graphic and satellite data have been used in different ways
to drive systems which predict food insecurity for this pur-
pose. In this study, we combine satellite image data with
data on specific households (for example, on the number of
people in the household, the land size avaiable for farming,
ownership of livestock and distance to the nearest road) in
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Figure 1: Example snapshots of (a) NDVI and (b)
RFE data across the extent of Uganda, both at a
resolution of 8000 metres. A value of 1 in the NDVI
data indicates a body of water, other values indicate
the vigour of vegetation.

order to make more specific predictions than could be made
with either source of data alone.

Examples of the type of satellite data we use are shown
in Figure 1. Panel (a) depicts a Normalized Difference Veg-
etation Index (NDVI) map of Uganda derived from the Na-
tional Oceanic and Atmospheric Administration’s (NOAA)
Advanced Very High Resolution Radiometer (AVHRR). The
AVHRR is an example of a meteorological satellite that col-
lects data about the earth’s land cover types and condi-
tions, cloud cover patterns, sea surface temperature etc. The
AVHRR collects this data across five spectral bands of the
electromagnetic spectrum, from which derivatives such as
NDVI and rainfall estimates (Figure 1(b)) can be extracted.
It also has a temporal resolution of 12 hours, thus making it
possible to derive information about any given location on
the surface of the globe at least twice a day. In spite of the
coarse resolution of 8km, it has the advantage of wide area
coverage.

Our goal is to be able to make predictions of famine which
go beyond a blanket warning for a given region. In heteroge-
nous populations, while some sectors of the population may
be at risk of famine in a certain area, other sectors may not.
We therefore try to split up the households in the country
into defined categories, with a particular focus on category
definitions which are easy to communicate so that the results
of predictions can be easily translated into policy. Most con-



ventional clustering methods such as k-means give cluster
regions for which the decision boundaries may be somewhat
complex, e.g. a set of inequalities based on some distance
measure. Hand-chosen household categories may be easier
to communicate, but may not be optimal with respect to the
specificity of predictions based on them (e.g. if two hand-
crafted categories are highly correlated). In section 4, we
introduce a methodology for finding clusters of households
which are informative for famine prediction, and which are
also easy to communicate. Our clusters are defined by a
binary tree, which we optimise using a simulated annealing
strategy.

We then look at the use of supervised learning to give
warnings of famine. Learning the relationship between veg-
etation stress and food insecurity is not straightforward, as
high density of vegetation in a region does not necessarily
mean there is more to eat. The relationship between the dif-
ferent demographic indicators such as production,household
income and available labour is also not straightforward, and
it is important to establish the relationship between the dif-
ferent variables used to detect famine [7].

Our results, in section 5, show the improvement in ac-
curacy and specificity which can be attained by combining
satellite and demographic data, and the utility of our clus-
tering method.

2. RELATED WORK

Sub-Saharan Africa is a region heavily reliant on agri-
cuture, and monitoring trends in agricultural production
has long been imperative. Application of remote sensing
in famine early warning systems has been used since the
mid-1980s to monitor the crop and rangelands of semi-arid
sub-Saharan Africa [4, 5, 9]. Vegetation stress which is mea-
sured as vegetation index (VI) at different wave bands (in
the red and NIR portions of the spectrum) is used to show
the spatial and temporal variations of biophysical vegetation
parameters and this has been applied previously in opera-
tional famine early warning system [1, 5].

International organizations including the United States
Agency for International Development (USAID) have worked
on famine early warning systems [11]. Their methods in-
volve the use of climate monitoring and weather forecasting
results in comparison with methods of food access to deter-
mine food security in an area, although without integrating
both types of data into a single model.

Attempts have been made to integrate other sources of
data like prices of major food crops in an area to satel-
lite remote sensing data to improve on food insecurity pre-
diction. Brown et al [1] used satellite remote sensing data
in a spatially explicit price model to assess food insecurity
of communities and regions in less-developed parts of the
world. This model created a leading indicator of potential
price movements for early warning of food insecurity indi-
cating the importance of integration of other source of date
to satellite remote sensing data. Other work has taken a
different approach rather than making warnings of crop fail-
ure directly; for example Khan et al [6] carried out work to
predict prices of major food grains and malnutrition rates
from NDVT data.

3. SATELLITE AND HOUSEHOLD DATA
The NDVT and rainfall estimate data for the three study

o
o)

o
o

©
i

NDVI (Nakapiripirit)

Jan04 Julo4 Jan05 Julos Jan06

o o
o

NDVI (Kitgum)
o
N

Jan04 Julo4 Jan05 Jul05 Jan06

o
e

o
o

©
~

NDVI (Kamwenge)

Jan04 Julo4 Jan05 Jul0o5 Jan06

Figure 2: NDVI fluctuations according to seasons
for three districts in the east, north, and south-west
of Uganda respectively.

areas of interest were obtained from the Famine Early Warn-
ing System Network! through the Africa Data Dissemination
Service to coincide with the available demographic data for
two agricultural seasons July-December 2004 and January-
June 2005. The rainfall estimate is a product of an algorithm
developed by NOAA at the Climate Prediction Center for
Rainfall Estimate known as the CPC-RFE which has been
widely tested and applied in the African region [8]. It is a
technique that combines satellite and surface based rainfall
estimation. The CPC-RFE uses a merging technique that
increases the accuracy of the rainfall estimates by reducing
significant bias and random error compared with individual
precipitation data sources [12], thereby adding value to rain
gauge interpolations.

NDVTI is based on the principle that actively growing green
plants strongly absorb radiation in the visible region of the
spectrum while strongly reflecting radiation in the near in-
frared region. It is calculated as

NIR - R

NDVI = fre—p (1)
where NIR is the intensity measured in the near infrared
spectrum, and R is the intensity in the visible red spectrum.
The formulation of NDVI makes it resilient to variations at-
tributed to calibration, noise, and changing irradiance con-
ditions that accompany changing sun angles, topography,
clouds/shadow and atmospheric conditions.

Examples of NDVI fluctuations over time can be seen in
Fig. 2, showing variation with wet and dry seasons in dis-
tricts in different parts of Uganda. Here we use the mean
NDVT across the extent of each district.

Demographic data for the same two agricultural seasons

"http://www.fews.net



Sex of the household head male/female

Age of the household head years

Marital status of the household head married/
divorced/
single/
widowed

Size of household number of
people

Size of land available to the household acres

for farming

Amount of labour available for cultiva- person-

tion per year years

Distance from household residence to km

the nearest main road

Distance from household residence to km

farm land

Total annual production of crops avail- kg

able for consumption by the household

(excluding crops which are sold)

Agricultural shock (e.g. presence of true/false

flooding, drought, market fluctuation)

Crops attacked by pests true/false

Ownership of livestock true/false

Household famine status (whether famine/

daily calorie intake per person in the not famine

household is above 1800 kCal)

Table 1: Variables in the famine dataset describing
each household surveyed.

(July-December 2004 and January-June 2005) was collected
by the Uganda Bureau of Statistics on households in 56 of
the 80 districts across Uganda [10]. This data included the
district of each household, the occupation, gender, mari-
tal status, education level and age of the household head,
the household’s exposure to agricultural shock (e.g. pest
attacks), the distance from the home to a main road, and
the distance from the home to their place of food cultiva-
tion. Finally the data included the agricultural production
of each household and calorific consumption per person in
the household. These variables are summarised in Table 1.

The raw data in the study had problems with consistency,
for example with crop production for different households
which was reported in varying units such as tins, kilogram
and baskets. This was corrected as far as possible, and
anomalous rows in the data were excluded.

4. HOUSEHOLD CLUSTERING TREES

Our goal is to make predictions of famine not just for all
residents of a certain district, but for specific categories of
households. In a population containing different types of
households, at a specific point in time the fact that some
households have a high risk does not mean this is true for
all housholds.

In order to do this we have to group households together
in some way. In this section we describe a novel clustering
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Figure 3: Prototype-based clusters (left) are defined
by a set of points {u;}, giving a Voronoi decision
boundary in 2D. Defining clusters with a binary tree
(right) gives cuboid regions with edges perpendicu-
lar to the axes.

algorithm intended to produce interpretable cluster bound-
aries which are informative for famine prediction.

Many well-known clustering algorithms are available, such
as k-means, though we are constrained in this case by the
form of the decision boundary after learning clusters. A
prototype-based clustering algorithm gives clusters which
may be difficult to communicate, being based on a distance
measure and a set of inequalities. Clusters can alternatively
be represented by a binary tree, as used in classification and
regression trees (CART); this produces cuboid regions which
can be expressed simply as a set of ranges on each descriptor
variable. This is illustrated in Figure 3.

We now describe the structure of our clustering trees.
Such a tree 7 is defined by a set of vertices V and ver-
tex parameters ©. The vertices are divided into leaf nodes
and decision nodes, V = Vi U Vp. Each vertex has a set
of parameters, ©, = {cy, %y, 04, € , e }, which are non-null
under the following conditions:

veVy: e € {1,...,k} (Cluster index)
veVp: i, € {1,...,V} (Variable index)
veVp: 0, € R (Threshold)
veVp: e, € V/{vuell (Left child)
vEVDh: ef € V/{vUey} (Right child)

Some vertex v; is assigned to be the root node, which must
have no incoming edges (that is, e, and e; are never equal
to to v1). For the clustering tree to be consistent, the graph
structure defined by the edges implicit in © must contain a
unique path from v; to every other vertex.

To assign a vector x = z1,...,xv to a cluster index, we
begin at the root vertex. If ¢1 € {1,...,k}, then we assign
that cluster index. Otherwise, we test if x;, > 6. If this
condition is satisfied we move to vertex e, otherwise we
move to vertex e; , and repeat the procedure.

4.1 Clustering evaluation
To evaluate a clustering tree 7 with respect to N rows of



input data, we need an evaluation metric O(7,x1.n5). It is
common to evaluate clusters using some distance measure,
for example preferring clusterings which minimise the av-
erage intra-cluster distance and maximise inter-cluster dis-
tance for a training dataset.

In this application, we are interested in finding clusters
which allow us to make specific predictions of famine risk.
Instead of applying a distance measure, we therefore look at
the levels of correlation between clusters in terms of house-
hold food production in different areas.

Where each household in our training data has a district
and a seasonal production, we can calculate the matrix P,
where P, 4 is the average production in the dth district for
households in the cth cluster (as assigned by clustering tree
T). Our clustering metric is then calculated as follows:

APy = (Py)) (Pi. = (Py)))
Co = B o@oye. @) P

o) = %ZZC] (3)

where (-) denotes an expectation. This metric gives us the
average correlation between clusters in terms of production
across different districts. Minimising O(7) gives us clusters
which we expect to be specific in terms of famine risk.

4.2 Stochastic search

We use a simulated annealing method to learn cluster de-
scriptors with low values of O(T). In this approach, we first
initialise a clustering tree. We constrain the clusters so that
each cluster must occupy a single cuboid region in the data
space, which is easy to implement by having the number of
leaf vertices equal to the number of clusters. For k clus-
ters, we must have |Vi| = k leaf vertices and therefore (in
a directed tree) |Vp| = k — 1 decision vertices. We initialise
Cv,iv, 00, €5 ,€d in the decision vertices randomly, though
fulfilling the tree structure constraint described above, and
also with non-conflicting threshold values (that is, if vertex
vy is a descendent of v, and i, = 73, then 6, < 6, if vp is in
the left subtree of vq, and 6, > 0, otherwise).

Candidate trees are generated by iteratively making mod-
ifications to the tree. The possible “moves” are:

e Swap nodes, taking any two vertices v, vy not includ-
ing the root vertex and swapping the parameters ©,,
and ©O,,. In this case, we have to check that the re-
sulting graph is still a valid tree. This can be done
easily, for example checking for cycles by testing that
the eigenvalues of A + I are all positive where A is
the adjacency matrix of the tree and I is the identity
matrix;

e Change threshold, where we alter the value of one of
the thresholds 6,, resampling according to some prior
distribution and in such a way that the tree is still
consistent;

e Change variable being considered at a certain decision
vertex, i.e. altering the value of i, for some v. Again
we have to check whether the tree is consistent after
making such a change.

Given a neighbouring tree 7" generated by one of these
moves (made at random), we can evaluate the improvement
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Figure 4: Objective function averaged over 25 trials,
where the shaded area shows two standard devia-
tions away from the mean. Insets show correlation
matrices C (a) at initialisation and (b) after 1000 it-
erations, where lighter shades denote matrix entries
closer to 1, and darker shades denote values closer
to 0.
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Figure 5: Example household clustering tree, corre-
sponding to the final matrix C in Fig. 4(b). House-
hold indicator variables are: distance to road (dr),
land size (Is), age of household head (age), income
(inc), distance from house to garden (dg). Figures
are expressed in percentiles of the training data.

in score and accept the change if:

O(T*7X1;N) —O(T,XLN) >7‘.T, ’I'NU[O, 1] (4)

where U[] denotes a uniform distribution. The “tempera-
ture” parameter 71" starts at a high level and is gradually
reduced. A common cooling scheme is to use 7' = ¢ at it-
eration ¢, which we use here with the constant ¢ = 1. More
complicated cooling schedules are also possible. The effect of
this is to prevent a solution being trapped in a sub-optimal
local minima.

Figure 5 shows an example clustering tree obtained after
carrying out this cluster learning procedure for 1000 itera-
tions. We find that distance to the road is an important fac-
tor, as it gives information on how much trade a household
is engaged in. These cluster boundaries are easy to commu-
nicate. For example, if we wanted to raise the alarm for the
cluster on the far right in Fig. 5, we simply communicate
the alarm for “All households more than 92 percentiles away
from the nearest main road, and more than 46 percentiles
from their food-cultivation area”.



AUC  Specificity

Satellite data only 0.632 0.417
Demographic data only  0.614 0.432
Satellite + Demographic  0.671 0.470
Satellite + Cluster IDs 0.656 0.465

Table 2: Results from using satellite and demo-
graphic data for prediction of famine. Specificity
figures given for the threshold giving 50% sensitiv-

ity.

5. RESULTS

We used the preceeding data to make classifications of
food security on a household level for the 3094 households in
our dataset. For each household, we look at records of the
calorific intake per person over two seasons, Q3/Q4 2004,
and Q1/Q2 2005. We define food insecurity as a calorific
intake of less than 1800 kcals/day, a level at which a family
is vulnerable to famine.

To predict food insecurity, we use four sets of covariates:
(a) demographic data only, (b) satellite data (NDVI and
RFE) only, (c) satellite and demographic data, and (d) satel-
lite data and household cluster IDs. We carried out training
and classification with the AdaBoost algorithm [2] using de-
cision stumps as a base classifier. Evaluation was done with
10-fold cross validation. The Weka framework [3] was used
to carry out these experiments.

Table 5 gives AUC and specificity statistics (the latter cor-
responding to a classifier threshold giving 75% sensitivity).
Figure 6 (upper panel) shows ROC curves for datasets (a-c).
It can be seen that the combination of satellite and demo-
graphic data gives marginally more accuracy than either of
the datasets alone.

Figure 6 (lower panel) shows the difference between ROC
curves when using satellite data only for classification, and
satellite data with household cluster IDs. Again, we see a
marginal improvement in specificity and overall classification
performance with the cluster IDs included. Although the
margins of improved prediction accuracy are small, when
dealing with large populations an incremental improvement
may be of high significance.

6. CONCLUSION

We show that adding demographic information about house-

holds to satellite observation data gives better accuracy in
making predictions at a household level. We have described
a clustering method for this data which gives household cat-
egories that are easy to communicate, and which can be used
as the basis of an improved satellite famine warning system
to give famine risk alarms with increased specificity.

Promising ways to expand this work would include ex-
tracting features from the satellite data, i.e. learning mea-
sures other than NDVI and RFE from raw multi-spectral
satellite images. The model could also be made explicitly
spatial, if we assume that households which are geograph-
ically close together are likely to be correlated in terms of
famine risk.
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